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In this communication we report the first direct identification of
the inherently unstable putative hemiketal phosphate intermediate
bound to the enzyme 3-deoxy-D-manno-2-octulosonate-8-phosphate
synthase (KDO8PS) in a noncovalent complex. This is ac-
complished by the application of time-resolved electrospray ioniza-
tion mass spectrometry (ESI-MS) experiments directly monitoring
the enzymatic reaction with its natural substrates on a very short,
millisecond time scale.

KDO8PS catalyzes the first committed step in the lipopolysac-
charide biosynthetic pathway in Gram negative bacteria and
involves a net aldol condensation between arabinose-5-phosphate
(A5P), H2O, and phosphoenol pyruvate (PEP) to form an unusual
eight-carbon sugar KDO8P and inorganic phosphate (Pi) (Scheme
1).1 Since KDO8PS is essential for Gram negative bacteria and
not present in mammalian systems, it represents an attractive
molecular target for the design of new antibiotics.2

A number of biochemical3 and structural4 studies suggest that
the reaction mechanism of KDO8PS may involve the transient
formation of a labile hemiketal phosphate enzyme intermediate (I ,
Scheme 1). In addition, we have recently synthesized the first
bisubstrate inhibitor combining the key features of PEP and A5P
into a single molecule which has an acyclic structure.5 This
compound proved to be potent inhibitor of KDO8PS with aKd of
400 nM, lending support for the concept of a mechanism that
proceeds through the involvement of intermediateI . However,
despite all of the above observations, to date there is no evidence
available for the existence ofI as a true enzymatic intermediate.
Moreover, this type of hemiketal phosphate species, while inferred
in several chemical and enzymatic reactions,6 has not yet been
directly observed. This is due to the fact that the proposed hemiketal
phosphate is both chemically labile and likely to have a very short
half-life, whether free in solution or bound to the enzyme.3b,6

Previous investigations have demonstrated the successful ap-
plication of ESI-MS and matrix-assisted laser desorption/ionization
(MALDI) to monitor enzymatic reactions on longer time scales
(>0.1 s) and to detect low-molecular weight enzyme intermediates
as well as covalently bound enzyme intermediates.7,8 The current
study focused on the simultaneous detection of substrates and
products as well as the putative intermediateI that are bound to
the enzyme asnoncoValent complexes, to establish the catalytic
mechanism for KDO8PS.

A transient kinetic approach has been successfully used for direct
detection of both noncovalent and covalent enzyme intermediates9

on a millisecond time scale with the utilization of rapid chemical
quench methodology.10 However, a limitation of this methodology
is the detection of intermediates that are chemically labile under
quench conditions, e.g. acidic or basic, and hence precludes direct

detection. This is, in fact, the presumed problem for detection of
the labile hemiketal phosphate intermediate (I ) hypothesized for
KDO8PS. Also, while our previous transient kinetic studies of
KDO8PS indicated that the half-life for this reaction is∼7 ms,3b

the reaction is completely irreversible3a,b precluding the use of
equilibrium or reverse direction experiments to examine catalysis.
Considering the above limitations, our strategy for the detection of
I involved the design of a novel rapid-mixing technique interfaced
with high-resolution ESI-MS that would allow real-time monitoring
of chemical catalysis for enzyme reaction times as short as 6-7
ms, hence avoiding the need for chemical quenching. To achieve
the required short time resolution, the ESI time-of-flight (ESI-TOF)
mass spectrometer has proven suitable for these studies.

Control experiments (see Supporting Information) were first
conducted with the KDO8PS alone and with the binary complex
KDO8PS‚PEP (E‚PEP) to ascertain ESI-TOF MS conditions for
both optimal sensitivity and temporal resolution. The desired short-
time resolution was achieved by a combination of a custom-
designed electrospray probe, high flow rates, and minimal length,
narrow-bore fused silica capillary tubing. For maintaining efficient
desolvation of the ions at the high flow rates used, high voltage
(∼120 V) was required that still allowed∼15-20% of noncovalent
complexes to remain.

The catalytic reaction11 of KDO8PS12 with its natural substrates,
PEP and A5P, was examined under single enzyme turnover
conditions13 by rapidly mixing the E‚PEP solution with a limiting
amount of the second substrate, A5P. The reaction was monitored
over several time ranges (7 ms to 160 ms) as illustrated in Figure
1. At earlier times, the enzyme binary complexes with each
substrate, E‚PEP (m/z 2067.9) and E‚A5P (m/z 2072.0), and each
product, E‚KDO8P (m/z2077.8) and E‚Pi (m/z2063.1), along with
the intense peak of the free enzyme (m/z 2056.7) are observed.
Moreover, a resolved peak corresponding to the enzyme-bound
intermediate (E‚I , m/z 2084.2) is clearly evident (see Scheme 1
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Scheme 1. KDO8P synthase reaction pathway
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and Table 1 for structures and molecular weights) with similar
intensity to the peak corresponding to E‚KDO8P at the earliest time
point. While we do not focus on quantitative kinetics of the reaction
at this time, it is noted that the peaks corresponding to the products
complexes [E‚KDO8P (denoted by pink dotted line) and E‚Pi]
increase with longer reaction times, and the peaks corresponding
to the substrates complexes (E‚PEP and E‚A5P) simultaneously
decrease until there is complete consumption of the limiting
substrate, A5P. Moreover, the peak corresponding to the E‚I
(denoted by the green dotted line), completely disappears in a time-
dependent manner consistent with conversion of substrates to
products as would be expected for a true reaction intermediate.
Therefore, the observed molecular weight and kinetic characteristics
of the E‚I species establish thatI is formed during the enzyme
catalysis and has hemiketal phosphate structure as depicted in
Scheme 1.14

In conclusion, this study establishes the catalytic mechanism for
KDO8PS and describes the firstdirect evidence of a hemiketal
phosphate intermediate,I , in enzyme catalysis. Further kinetic and
ESI-TOF MS studies of the wild-type and mutant KDO8PS along
with other enzymes involved similar hemiketal phosphate inter-
mediate are underway. The rapid-mixing ESI-TOF MS has broad
application for studying biological processes and opens up new
routes to explore the earliest chemical events at the active site of
an enzyme or receptor-ligand binding events.
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Figure 1. ESI-TOF mass spectra of KDO8PS during catalysis. A time
course of KDO8PS catalysis during single turnover reaction monitored by
ESI-TOF MS in the positive ion mode. The E‚PEP was mixed with the
second substrate, A5P. Each trace represents the average of 15 mass spectra
recorded in trap pulse mode with 60 000 pulses per mass spectrum. The
peaks marked E, E‚Pi, E‚PEP, E‚A5P, E‚KDO8P, and E‚I correspond to
KDO8PS and its complexes with Pi, PEP, A5P, KDO8P, and intermediate
I, respectively, at 15+ charge state at the reaction times: 7, 10, 16, and
160 ms.

Table 1. Enzyme Complexes at Charge State 15+ and
Corresponding Molecular Weights

complexes of enzyme catalysis and
measured mass-to-charge ratio (m/z)

measured Mr

(Da)
calculated Mr

(Da)

[E + 15H]15+ 2056.7( 0.2 30835( 3 30834.5
[E‚Pi + 15H]15+ 2063.1( 0.1 30931( 2 30932.5
[E‚PEP+ 15H]15+ 2067.9( 0.1 31004( 2 31002.5
[E‚A5P +15H]15+ 2072.0( 0.1 31065( 2 31064.6
[E‚KDO8P+15H]15+ 2077.8( 0.2 31152( 3 31152.7
[E‚I +15H]15+ 2084.2( 0.1 31248( 2 31250.7
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